Capture of Phosphorus(I) and Arsenic(I) Moieties by a 1,2-Bis(arylimino)acenaphthene (Aryl-BIAN) Ligand. A Case of Intramolecular Charge Transfer

Gregor Reeske, Clint R. Hoberg, Nicholas J. Hill, and Alan H. Cowley*
Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165

Received January 2, 2006; E-mail: cowley@mail.utexas.edu

Abstract

The presence of an extensive π-system and two Lewis basic sites enables the 1,2 -bis(arylimino)acenaphthene (aryl-BIAN) class of ligands ($\mathbf{1}$, Chart 1) to function as both electron and proton sponges. This desirable combination of properties has resulted in the widespread use of aryl-BIAN-supported transition metal derivatives as versatile catalysts for a variety of important reactions. ${ }^{1}$ However, considerably less information is available regarding aryl-BIAN complexes of the main group elements. ${ }^{2}$ To date, this ligand class has not been used in the context of group 15 chemistry.

Chart 1

It has been known for several years that the reduction of PCl_{3} with SnCl_{2} in the presence of chelating bis(phosphines) results in the formation of cyclic triphosphenium ions (2, Chart 1). ${ }^{3}$ Use of a similar protocol with AsCl_{3} permits the isolation of an arsenic analogue of 2 with a six-membered $\mathrm{C}_{3} \mathrm{P}_{2}$ As ring. ${ }^{4}$ Subsequently, several other cyclic triphosphenium cations featuring a variety of ring sizes and types have been reported. ${ }^{5}$ Although the mechanism of formation of these cations has not been established, it is reasonable to assume that the SnCl_{2} reduction of $\mathrm{ECl}_{3}(\mathrm{E}=\mathrm{P}, \mathrm{As})$ results initially in "ECl" and $\mathrm{SnCl}_{4}{ }^{6}$ and that the former is trapped by the chelating bis(phosphine) prior to or concomitant with abstraction of Cl^{-}by SnCl_{4}. In more recent work, it has been discovered that $2(\mathrm{R}=\mathrm{Ph})$ can be isolated as the iodide salt from the redox reaction of PI_{3} with bis(diphenylphosphinoethane). ${ }^{7}$ Acyclic cations of the types $\left[\mathrm{R}_{3} \mathrm{PPPR}_{3}\right]^{+}$and $\left[\mathrm{R}_{3} \mathrm{PAsPR}_{3}\right]^{+}$are also known ${ }^{8,9}$ as are some N-heterocyclic carbene (NHC) analogues. ${ }^{10}$ Typically, the ${ }^{31} \mathrm{P}$ chemical shifts of the central phosphorus atom of cyclic triphosphenium cations fall in the range of $\delta-210$ to $-270 .{ }^{5}$ Moreover, in the case of $\mathbf{2}(\mathrm{R}=\mathrm{Ph})$, this atom is sufficiently basic to undergo protonation, ${ }^{11}$ hence these salts are best regarded as adducts of phosphorus(I), namely, the predominant canonical form is $\mathrm{D}^{+} \rightarrow \mathrm{P}^{-} \leftarrow \mathrm{D}^{+}(\mathrm{D}=$ phosphine, NHC$)$.

Given the foregoing, we became interested in exploring the consequences of trapping the putative ECl molecules with ligands other than phosphines and carbenes. Treatment of an equimolar mixture of PCl_{3} and SnCl_{2} with dpp-BIAN ($\mathbf{1} ; \mathrm{Ar}=2,6-i-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$) in THF solution at ambient temperature resulted, after workup, in a 66% yield of a dark green salt of composition [(dpp-BIAN)P][$\left.\mathrm{SnCl}_{5} \cdot \mathrm{THF}\right]$ (3). The most obvious feature of the NMR spectral data for 3 is the ${ }^{31} \mathrm{P}$ chemical shift of $\delta+232.5$, which falls in the

Figure 1. ORTEP view of the $[(\mathrm{dpp}-\mathrm{BIAN}) \mathrm{P}]^{+}$cation of $\mathbf{3}$ showing the atom numbering scheme. Selected bond distances $[\AA]$ and angles $\left[{ }^{\circ}\right]$ with corresponding values for 6 in parentheses: $\mathrm{P}-\mathrm{N}(1) 1.694(4)$ [1.700(4)], $\mathrm{P}-\mathrm{N}(2) 1.689(4)$ [1.685(5)], $\mathrm{N}(1)-\mathrm{C}(1) 1.351(5)$ [1.354(7)], N(2)-C(12) $1.366(5)$ [1.361(7)], $\mathrm{C}(1)-\mathrm{C}(12) 1.395(5)$ [1.380(8)], $\mathrm{N}(1)-\mathrm{P}-\mathrm{N}(2) 90.23-$ (17) [89.75(2)], $\mathrm{P}-\mathrm{N}(1)-\mathrm{C}(1)$ 113.1(3) [113.2(4)], $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(12)$ 112.3(4) [111.8(5)], $\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{N}(2) 110.9(4)$ [111.7(5)], $\mathrm{C}(12)-\mathrm{N}(2)-\mathrm{P}$ 113.4(3) [113.5(4)].
region observed for phosphenium cations. ${ }^{12}$ Further insight was gained from a single-crystal X-ray diffraction study of $\mathbf{3}$ (Figure 1). ${ }^{13}$

The most noteworthy structural features concern the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond distances within the planar $\mathrm{PN}_{2} \mathrm{C}_{2}$ ring. Specifically, the $C(1)-C(12)$ bond distance $(1.395(5) \AA)$ is considerably shorter than the corresponding distance in the uncoordinated dpp-BIAN ligand $(1.527 \AA)^{14}$ and indicative of double bond character. Moreover, the $\mathrm{C}-\mathrm{N}$ bond distances in $\mathbf{3}$ (av. 1.385(5) \AA) are longer than those in free dpp-BIAN $(1.272 \AA)^{14}$ and commensurate with a bond order of approximately one. Overall, the metrical parameters for the $\mathrm{PN}_{2} \mathrm{C}_{2}$ ring are very similar to those found for cyclic phosphenium cation 4 (Chart 1). ${ }^{15}$ Moreover, the structure of the dpp-BIAN ligand in $\mathbf{3}$ also bears a close resemblance to that of the complex $\left[(\mathrm{dtb}-\mathrm{BIAN}) \mathrm{Mg}(\mathrm{THF})_{2}\right]$ which was prepared via the reaction of activated Mg metal with the neutral dtb-BIAN ligand (1; $\mathrm{Ar}=2,5$-di-tert-butylphenyl). ${ }^{16}$ Thus, akin to Mg metal, the "PCl" molecule functions as a two-electron reductant toward the aryl-BIAN ligand. Accordingly, and in contrast to 2 and related triphosphenium cations, the dicoordinate phosphorus atom of $\mathbf{3}$ is in the +3 rather than the +1 oxidation state. The fact that internal redox takes place in the case of $\mathbf{3}$ but not $\mathbf{2}$ is attributable to the presence of a low-lying LUMO in the neutral dpp-BIAN ligand and the aromaticity of the resulting $[(\mathrm{dpp}-\mathrm{BIAN})]^{2-}$ anion. The [$\left.\mathrm{SnCl}_{5} \cdot \mathrm{THF}\right]^{-}$counteranion is essentially octahedral and the closest $\mathrm{P}^{+} \cdots \mathrm{Cl}$ contacts are to $\mathrm{Cl}(1)(3.374(5) \AA)$ and $\mathrm{Cl}(2)(3.328(5) \AA)$.
We have also investigated the ambient temperature reaction of equimolar quantities of dpp-BIAN and PI_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution in

Figure 2. ORTEP view of the [(dpp-BIAN)As] ${ }^{+}$cation of 7 showing the atom numbering scheme. Selected bond distances $[\AA]$ and angles [${ }^{\circ}$]: As$\mathrm{N}(1) 1.839(3), \mathrm{As}-\mathrm{N}(2) 1.857(4), \mathrm{N}(1)-\mathrm{C}(1) 1.348(5), \mathrm{N}(2)-\mathrm{C}(12) 1.348-$ (5), $\mathrm{C}(1)-\mathrm{C}(12) 1.399(6), \mathrm{N}(1)-\mathrm{As}-\mathrm{N}(2) 84.89(15), \mathrm{As}-\mathrm{N}(1)-\mathrm{C}(1)$ 114.7(3), $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(12) 112.6(4), \mathrm{C}(1)-\mathrm{C}(12)-\mathrm{N}(2) 115.3(4), \mathrm{C}(12)-$ $\mathrm{N}(2)-$ As 112.5(3).
the absence of a reducing agent. ${ }^{31} \mathrm{P}$ NMR spectroscopic assay of the resulting dark brown reaction mixture revealed the exclusive presence of a sharp singlet at $\delta+234.5$. That virtually quantitative formation of [(dpp-BIAN)P][I I_{3} (6) had occurred was confirmed on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data along with an X-ray diffraction study of a single crystal grown from THF solution. ${ }^{13}$ Comparison of the metrical parameters for the phosphenium cations of $\mathbf{3}$ and $\mathbf{6}$ reveals that they are identical within experimental error. The closest contact between P^{+}and $\mathrm{I}_{3}{ }^{-}$is 3.883(6) \AA. Although we have no mechanistic information, it is plausible that the interaction of dpp-BIAN with PI_{3} results in the initial formation of I_{2} and "[(dpp-BIAN)PI]", from which I^{-}is abstracted by I_{2}. As in the case of $\mathbf{3}$, subsequent or concomitant intramolecular charge transfer affords the final product, 6.

The arsenium salt [(dpp-BIAN)As][$\left.\mathrm{SnCl}_{5} \cdot \mathrm{THF}\right]$ (7) has been prepared by a similar procedure to that employed for the synthesis of $\mathbf{3}$. The green crystalline product was examined by single-crystal X-ray diffraction (Figure 2). ${ }^{13}$ The $\mathrm{AsN}_{2} \mathrm{C}_{2}$ ring is planar, and the average $\mathrm{C}-\mathrm{N}$ and $\mathrm{As}-\mathrm{N}$ bond distances are very similar to those in $\mathbf{5}^{15}$ and subsequently reported ${ }^{17}$ cyclic arsenium cations, thus supporting the view that arsenic is in the +3 oxidation state. The fact that the $\mathrm{C}(1)-\mathrm{C}(12)$ bond distances in $\mathbf{3}, \mathbf{6}$, and 7 are ~ 0.06 \AA longer than the corresponding distances in $\mathbf{4}$ and $\mathbf{5}$ is presumably due to the constraints of the somewhat rigid dpp-BIAN framework. Finally, we note that the [(dpp-BIAN)As] ${ }^{+}$cation is isoelectronic with [(dpp-BIAN)Ge]. ${ }^{18}$ As expected, the $\mathrm{N}-\mathrm{E}-\mathrm{N}$ bond angle and $\mathrm{E}-\mathrm{N}$ bond distances are smaller for the arsenic cation than the germylene due to the fact that the ionic radius of As^{3+} is less than that of Ge^{2+}. As in the case of $\mathbf{3}$, the shortest cation-anion contacts involve $\mathrm{As}^{+} \cdots \mathrm{Cl}(1)(3.298(5) \AA)$ and $\mathrm{As}^{+} \cdots \mathrm{Cl}(2)(3.215(5) \AA)$.

In summary, we have prepared the salts $[(\mathrm{dpp}-\mathrm{BIAN}) \mathrm{P}]\left[\mathrm{SnCl}_{5}{ }^{\circ}\right.$ THF], [(dpp-BIAN)P][I I_{3}, and [(dpp-BIAN)As][SnCl ${ }_{5} \cdot$ THF] which represent the first examples of group 15 complexes supported by a BIAN ligand. On the basis of NMR and X-ray structural data, it is concluded that, in contrast to the corresponding bis(phosphine)
complexes, the phosphorus or arsenic atoms in these cations adopt the +3 oxidation state.

Acknowledgment. We are grateful to the Petroleum Research Fund (Grant 38970-AC1) and the Robert A. Welch Foundation (Grant F-135) for support.

Supporting Information Available: Experimental details, spectroscopic data, and X-ray crystallographic data for 3, 6, and 7 (CIF). This material is available free of charge via the Internet at http:// pubs.acs.org.

References

(1) (a) van Laren, M. W.; Elsevier, C. J. Angew. Chem., Int. Ed. 1999, 38, 3715. (b) van Belzen, R.; Hoffmann, H.; Elsevier, C. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 1743. (c) Shirakawa, E.; Hiyama, T. J. Organomet. Chem. 2002, 653, 114.
(2) Schumann, H.; Hummert, M.; Lukoyanov, A. N.; Fedushkin, I. L. Organometallics 2005, 24, 3891 and references therein.
(3) Schmidpeter, A.; Lochschmidt, S.; Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1982, 21, 63.
(4) Gamper, S. F.; Schmidbaur, H. Chem. Ber. 1993, 126, 601.
(5) For summaries, see: (a) Boon, A. J.; Byers, H. L.; Dillon, K. B.; Goeta, A. E.; Longbottom, D. A. Heteroat. Chem. 2000, 11, 226. (b) Barnham, R. J.; Deng, R. M. K.; Dillon, K. B.; Goeta, A. E.; Howard, J. A. K.; Puschmann, H. Heteroat. Chem. 2001, 12, 501.
(6) (a) The formation of $\{\mathrm{PCl}\}_{n}$ by reduction of PCl_{3} with $\mathrm{Li}_{2}[t-\mathrm{BuNC}(\mathrm{H})$ $\mathrm{C}(\mathrm{H}) \mathrm{Bu}-t$] has also been reported: Denk, M. K.; Gupta, S.; Ramachandran, R. Tetrahedron Lett. 1996, 37, 9025. (b) A similar reaction takes place with a stannylene reducing agent: Veith, M.; Volker, H.; Majoral, J. P.; Bertrand, G.; Manuel, G. Tetrahedron Lett. 1983, 24, 4219.
(7) Ellis, B. D.; Carlesimo, M.; Macdonald, C. L. B. Chem. Commun. 2003, 1946. A similar reaction takes place with AsI_{3} to give the analogous $\mathrm{P}-\mathrm{As}-\mathrm{P}$ cation.
(8) Schmidpeter, A.; Lochschmidt, S.; Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1985, 24, 226.
(9) Driess, M.; Ackermann, H.; Aust, J.; Merz, K.; von Wüllen, C. Angew. Chem., Int. Ed. 2002, 41, 450.
(10) Ellis, B. D.; Dyker, C. A.; Decken, A.; Macdonald, C. L. B. Chem. Coттии. 2005, 1965.
(11) Lochschmidt, S.; Schmidpeter, A. Z. Naturforsch. 1985, 40b, 765.
(12) (a) Cowley, A. H.; Kemp, R. A. Chem. Rev. 1985, 85, 367. (b) Sanchez, M.; Mazières, M. R.; Lamandé, L.; Wolf, R. In Multiple Bonds and Low Coordination Chemistry in Phosphorus Chemistry; Regitz, M., Scherer, O., Eds.; Georg Thieme Verlag: Stuttgart, 1990; D1, p 129ff.
(13) All X-ray data sets were collected at 153 K on a Nonius-Kappa CCD diffractometer. Crystal data for 3: $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{OPSn}$, monoclinic, space group $P 2_{1} / n, a=13.189(5), b=22.335(5), c=14.637(5) \AA, \beta=104.102$ $(5)^{\circ}, V=4182(2) \AA^{3}{ }_{\circ} Z=4, \rho_{\text {calcd }}=1.429 \mathrm{~g} \mathrm{~cm}^{-3}, 2 \theta_{\max }=52.00$, Mo $\mathrm{K} \alpha,(\lambda=0.71073 \AA)$, total reflections collected $=15498$, unique reflections $=8180\left(R_{\mathrm{int}}=0.0562\right)$, absorption coefficient $\mu=1.002 \mathrm{~mm}^{-1}$, final R indices $R_{1}=0.0471, \mathrm{w} R_{2}=0.0995, \mathrm{GOF}=0.979$. Crystal data for 6: $\mathrm{C}_{72} \mathrm{H}_{80} \mathrm{I}_{6} \mathrm{~N}_{4} \mathrm{P}_{2}$, monoclinic, $P 2_{1} / c, a=17.625(4), b=15.265(3), c$ $=17.014(3) \AA, \beta=114.03(3)^{\circ}, V=4180.5(15) \AA^{3}, Z=2, \rho_{\text {calcd }}=1.450$ $\mathrm{g} \mathrm{cm}^{-3}, 2 \theta_{\max }=54.96$, Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA)$, total reflections collected $=17430$, unique reflections $=9546\left(R_{\text {int }}=0.0437\right)$, absorption coefficient $\mu=2.304 \mathrm{~mm}^{-1}$, final R indices $R_{1}=0.0478, \mathrm{w} R_{2}=0.1202, \mathrm{GOF}=$ 0.927. Crystal data for 7: $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{AsCl}_{5} \mathrm{~N}_{2} \mathrm{OSn}$, monoclinic, $P 2_{1} / n, a=$ $13.317(5), b=22.302(5), c=14.546(5) \AA, \beta=103.936(5)^{\circ}, V=4193.5-$ (2) $\AA^{3}, Z=4, \rho_{\text {calcd }}=1.495 \mathrm{~g} \mathrm{~cm}^{-3}, 2 \theta_{\max }=54.96$, Mo K $\alpha(\lambda=0.71073$ $\AA)$, total reflections collected $=16547$, unique reflections $=9460\left(R_{\text {int }}\right.$ $=0.0710$), absorption coefficient $\mu=1.744 \mathrm{~mm}^{-1}$, final R indices $R_{1}=$ $0.0512, \mathrm{w} R_{2}=0.0831, \mathrm{GOF}=0.985$.
(14) (a) El-Ayaan, V.; Paulovicova, A.; Fukudya, Y. J. Mol. Struct. 2003, 645, 205. (b) Marsh, R. E. Acta Crystallogr., Sect. B: Struct. Sci. 2004, 60, 252.
(15) (a) Carmalt, C. J.; Lomelí, V.; McBurnett, B. G.; Cowley, A. H. Chem. Commun. 1997, 2095. (b) Denk, M. K.; Gupta, S.; Lough, A. J. Eur. J. Inorg. Chem. 1999, 41. (c) Gudat, D.; Haghverdi, A.; Hupfer, H.; Nieger, M. Chem.-Eur. J. $2000,6,3414$.
(16) Fedushkin, I. L.; Chudakova, V. A.; Skatova, A. A.; Khvoinova, N. M.; Kurskii, Y. A.; Glukova, T. A.; Fukin, G. A.; Dechert, S.; Hummert, M.; Schumann, H Z. Anorg. Allg. Chem. 2004, 630, 501.
(17) Gans-Eichler, T.; Gudat, D.; Nieger, M. Heteroat. Chem. 2005, 16, 327.
(18) Fedushkin, I. L.; Skatova, A. M.; Chudakova, V. A.; Khvoinova, N. M.; Baurin, A. Y. Organometallics 2004, 23, 3714.

JA058459M

